Structure Reports

Online
ISSN 1600-5368

Racemic tricarbonyl[7-methoxy-2-($\boldsymbol{\eta}^{6}$-phenyl)chromane]chromium (0)

Mukut Gohain, Theunis J. Muller* and Barend C. B. Bezuidenhoudt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
Correspondence e-mail: muller.theunis@gmail.com

Received 19 February 2011; accepted 7 March 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=18.3$.

In the title compound, $\left[\mathrm{Cr}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right)(\mathrm{CO})_{3}\right]$, the Cr^{0} atom of the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit is coordinated to the phenyl ring of the flavan ligand in an η^{6} mode, with a normal arene-to-metal distance. The $\mathrm{Cr}(\mathrm{CO})_{3}$ unit exhibits a three-legged piano-stool conformation, while the dihydropyran ring displays a distorted envelope configuration. The phenyl ring is twisted away from the fused ring system by $25.5(2)^{\circ}$. The methoxy group is almost coplanar with the phenyl ring $\left[\mathrm{C}_{\mathrm{Me}}-\mathrm{O}-\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}\right.$ torsion angle $\left.=8.46(2)^{\circ}\right]$. The crystal packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For similar structures, see: van Tonder et al. $(2010 a, b)$ and for other related structures, see: van Tonder et al. (2009a,b). For the synthesis of the title compound, see: Müller et al. (1999) and for the sythesis of 7-methoxyflavan-4-one, see: Sato et al. (2006). For standard bond lengths, see: Allen et al. (1987). For the importance of flavonoids in biological investigations, see: Rice-Evans \& Packer (2003). For the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right)(\mathrm{CO})_{3}\right]} \\
& M_{r}=376.32 \\
& \text { Monoclinic, } P 2_{\mathrm{b}} / c \\
& a=9.7703(5) \mathrm{A}
\end{aligned}
$$

$Z=4$
$T=100 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.73 \mathrm{~mm}^{-1}$

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.818, T_{\text {max }}=0.942$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
222 parameters
$w R\left(F^{2}\right)=0.090$
H -atom parameters constrained
$S=1.00$
4069 reflections
$0.34 \times 0.23 \times 0.08 \mathrm{~mm}$

29057 measured reflections 4069 independent reflections 3526 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$				
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots 4^{\mathrm{iii}}$	0.93	2.54	$3.459(2)$	169
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\text {iii }}$	0.93	2.46	$3.153(2)$	132

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y-\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

The University of the Free State and Sasol Ltd are gratefully acknowledged for financial support and Johannes van Tonder for the NMR data and help with the synthesis of the title compound. Special thanks are due to Prof Andreas Roodt.

[^0]
References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brandenberg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Müller, T. J. J., Ansorge, M. \& Polburn, K. (1999). J. Organomet. Chem. 578, 252-259.
Muschalek, B., Weidner, I. \& Butenschön, H. (2007). J. Organomet. Chem. 692, 2415-2424.
Rice-Evans, C. A. \& Packer, L. (2003). Flavonoids in Health and Disease, Vol. 578, 2nd ed., pp. 252-259. New York: Marcel Dekker Inc.
Sato, S., Hiroe, K., Kumazawa, T. \& Jun-ichi, O. (2006). Carbohydr. Res. 341, 1091-1095.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tonder, J. H. van, Bezuidenhoudt, B. C. B. \& Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.
Tonder, J. H. van, Bezuidenhoudt, B. C. B. \& Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.
Tonder, J. H. van, Bezuidenhoudt, B. C. B. \& Janse van Rensburg, J. M. (2010a). Acta Cryst. E66, m907-m908.

metal-organic compounds

Tonder, J. H. van, Bezuidenhoudt, B. C. B. \& Janse van Rensburg, J. M. (2010b). Acta Cryst. E66, m1086.

supplementary materials

Racemic tricarbonyl[7-methoxy-2-(η^{6}-phenyl)chromane]chromium(0)

M. Gohain, T. J. Muller and B. C. B. Bezuidenhoudt

Comment

The title compound, $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right)\right]$ forms part of a series of chromium (0) complexes of the type $\left[\mathrm{Cr}(\mathrm{flav})(\mathrm{CO})_{3}\right]$ (flav = flavan, flavone or isoflavone ligand) (van Tonder et al., 2009a,b and 2010a,b). Our interest in this type of chromium(0) complexes is partly due to regioselective organic syntesis (Muschalek et al., 2007) and to the general biological activity of flavanoids (Rice-Evans \& Packer, 2003).

The title compound crystalized in the monoclinic space group P2(1)/c, with $Z=4$. For the title compound the molecular structure displays the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety complexed to the flavone C -ring, exhibiting the known three-legged piano-stool conformation. All bond distances and angles are within range (Allen et al., 1987). The distance between the Cr^{0} atom and the centroid of the A- η^{6}-coordinated phenyl ring is 1.7119 (3) \AA. The plane through C1'-C6' (r.m.s $=0.0038$ fitted atoms $\left.\mathrm{Cl}^{\prime}-\mathrm{C} 6^{\prime}\right)$ of the phenyl ring is at an angle of $42.762(43)^{\circ}$ to the plane formed between $\mathrm{C} 4-\mathrm{C} 10$ and O 1 (r.m.s $=0.00824$ fitted atoms $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and O1). The dihydropyran ring displays a distored envelope configuration by displacement of atoms C 2 and C 3 from the fused ring system plane, with distances of 0.105 (2) 0.618 (2) \AA respectively. The methoxy group at the C 7 position is nearley coplanar to the plane created by the fused ring system. The methoxy forme a dihedral angle of $-8.464(23)^{\circ}$ between $\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$. The molecules form chains through intermolecular $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}, \mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\mathrm{ii}}$ and $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots 4^{\text {iii }}$ hydrogen interactions (Table 1).

Experimental

7-methoxyflavan-4-one was synthesized as described by Sato et al. (2006). 7-Methoxyflavan-4-one ($1.00 \mathrm{~g} ; 3.9 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g}), 3 \mathrm{MH}_{2} \mathrm{SO}_{4}(\mathrm{aq})(1 \mathrm{ml})$, ethanol (30 ml). Purification by means of flash column-chromatography yielded 7-methoxyflavan ($0.67 \mathrm{~g} ; 70.6 \%$) as a colourless oil as described by Sato et al. (2006) $R_{f} 0.65$ (hexane:DCM:ethyl acetate; $50: 50: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.41$ ($\mathrm{m}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}, 2 \mathrm{H}$), $7.40-7.37\left(\mathrm{~m}, \mathrm{H}-3^{\prime}\right.$ and $\mathrm{H}-5^{\prime}, 2 \mathrm{H}$), 7.34-7.31 (m , H-4', 1H), 6.99-6.97 (m, H-5, 1H), 6.50-6.47 (m, H-6 and H-8, 2H), 5.05 (dd, $J=10.19,2.37 \mathrm{~Hz}, \mathrm{H}-21 \mathrm{H}), 3.77$ ($\mathrm{s},-\mathrm{OCH}_{3}$, 3 H), 2.92 (ddd, $J=16.08,10.92,6.02 \mathrm{~Hz}, \mathrm{H}-4(a) 1 \mathrm{H}), 2.74$ (ddd, $J=16.08,5.12,3.40 \mathrm{~Hz}, \mathrm{H}-4(e) 1 \mathrm{H}$), 2.22-2.18 (m, H-3 1H), 2.11-2.04 (m, H-3 1H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ p.p.m. $24.47(\mathrm{C}-4), 30.19(\mathrm{C}-3), 55.38\left(-\mathrm{OCH}_{3}\right), 77.98$ (C-2), 101.71 (C-6/8), 107.54 (C-6/8), 114.01, 126.11, 127.93, 128.61, 130.05, 141.79, 155.91, 159.23.

Preparation of the title compound was based on a method described by Müller et al. (1999). A solution of 7-methoxyflavan $(0.27 \mathrm{~g}, 1.1 \mathrm{mmol})$ and $\mathrm{Cr}(\mathrm{CO})_{6}(0.25 \mathrm{~g}, 1.1 \mathrm{mmol}, 1 \mathrm{eq})$ in butylether:THF ($9: 1 ; 25 \mathrm{ml}$) was degassed with argon, using standard Schlenk techniques, and refluxed (70 hr) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and evaporated in vacuo. Purification through flash column-chromotography yielded the title compound $(0.10 \mathrm{~g} ; 24 \%)$ as a yellow solid. Recrystallization from hexane:dichloromethane (6:1) yielded yellow plate like crystals suitable for X-ray analysis.

supplementary materials

$R_{f} 0.30$ (hexane:ethyl acetate; 3:5); $\mathrm{Mp} 145-147^{\circ} \mathrm{C} \operatorname{IR} v(\mathrm{CO})=1952,1894$ and $1844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.41(\mathrm{~m}$, $1 \mathrm{H}), 5.37-5.32(\mathrm{~m}, 3 \mathrm{H}), 4.67(\mathrm{dd}, J=10.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.99$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ p.p.m. 232.53, 159.27, 155.02, 129.85, 113.31, 111.38, 108.09, 101.51, 92.22, 91.62, 91.49, 91.22, 90.68, 75.37, 55.37, 29.89, 24.11.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent) of the parent atom with a $\mathrm{C}-\mathrm{H}$ distance of 0.93 . The methine H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ and at a distance of $0.97 \AA$. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ and at a distance of $0.96 \AA$ A.

Figures

tricarbonyl[7-methoxy-2-($\boldsymbol{\eta}^{\mathbf{6}}$-phenyl)chromane]chromium(0)

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=376.32$
Monoclinic, $P 2_{1} / c$
$a=9.7703$ (5) \AA
$b=19.1820$ (9) \AA
$c=8.8049(4) \AA$
$\beta=97.494$ (2) ${ }^{\circ}$
$V=1636.07(14) \AA^{3}$
$Z=4$

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer
graphite
Detector resolution: 8.5 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$F(000)=776$
$D_{\mathrm{x}}=1.528 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9920 reflections
$\theta=3.0-28.2^{\circ}$
$\mu=0.73 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, yellow
$0.34 \times 0.23 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.818, T_{\text {max }}=0.942$
29057 measured reflections
$k=-25 \rightarrow 25$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.00$
4069 reflections
222 parameters
0 restraints

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 15 $\mathrm{s} /$ frame. A total of 1821 frames were collected with a frame width of 0.5° covering up to $\theta=28.18^{\circ}$ with 99.7% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.3380(2)$	$0.29331(9)$	$0.6478(2)$	$0.0208(4)$
H1A	0.291	0.2854	0.7355	0.031^{*}
H1B	0.3066	0.3363	0.5995	0.031^{*}
H1C	0.4356	0.2959	0.6798	0.031^{*}
C1'	$0.17467(19)$	$-0.11113(9)$	$0.36846(19)$	$0.0178(3)$
C2	$0.28858(19)$	$-0.07158(9)$	$0.4658(2)$	$0.0190(3)$
H2	0.3777	-0.0837	0.4332	0.023^{*}
C2' $^{\prime}$	$0.19981(19)$	$-0.17979(9)$	$0.3254(2)$	$0.0196(3)$
H2 $^{\prime}$	0.2859	-0.1997	0.355	0.023^{*}
C3' $^{\prime}$	$0.0952(2)$	$-0.21918(9)$	$0.2369(2)$	$0.0213(4)$
H3' $^{\prime}$	0.1123	-0.265	0.2106	0.026^{*}
C3	$0.29216(19)$	$-0.08786(9)$	$0.6350(2)$	$0.0202(4)$
H3A	0.3106	-0.1371	0.6528	0.024^{*}

H3B	0.2034	-0.0771	0.6676	0.024^{*}
C4' $^{\prime}$	$-0.03356(19)$	$-0.18914(10)$	$0.1893(2)$	$0.0219(4)$
H4' $^{\prime}$	-0.1018	-0.2147	0.1301	0.026^{*}
C4	$0.40480(18)$	$-0.04451(8)$	$0.72666(19)$	$0.0167(3)$
H4A	0.4003	-0.0501	0.8354	0.02^{*}
H4B	0.4948	-0.0602	0.7056	0.02^{*}
C5	$0.43124(17)$	$0.08604(9)$	$0.77979(19)$	$0.0159(3)$
H5	0.4782	0.0757	0.8759	0.019^{*}
C5'	$-0.05972(19)$	$-0.11962(10)$	$0.2316(2)$	$0.0220(4)$
H5'	-0.1454	-0.0995	0.2003	0.026^{*}
C6	$0.41013(17)$	$0.15570(9)$	$0.73907(19)$	$0.0159(3)$
H6	0.4428	0.1912	0.8062	0.019^{*}
C6'	$0.04282(19)$	$-0.08107(9)$	$0.3203(2)$	$0.0197(3)$
H6'	0.0248	-0.0355	0.348	0.024^{*}
C7	$0.33885(17)$	$0.17112(9)$	$0.59536(19)$	$0.0159(3)$
C7'	$0.20844(19)$	$-0.03456(9)$	$0.0866(2)$	$0.0210(2)$
C8	$0.29047(18)$	$0.11775(9)$	$0.49617(19)$	$0.0176(3)$
H8	0.2422	0.1281	0.4007	0.021^{*}
C8'	$0.26596(17)$	$-0.16022(8)$	$0.02184(19)$	$0.0168(3)$
C9	$0.31439(18)$	$0.04906(9)$	$0.53999(19)$	$0.0163(3)$
C9'	$0.02989(18)$	$-0.11148(9)$	$-0.0765(2)$	$0.0185(3)$
C10	$0.38501(17)$	$0.03117(8)$	$0.68272(19)$	$0.0148(3)$
O1	$0.25988(15)$	$0.00078(6)$	$0.43410(14)$	$0.0232(3)$
O2	$0.30939(14)$	$0.23734(6)$	$0.54184(14)$	$0.0210(3)$
O3	$0.26044(13)$	$0.01758(6)$	$0.06402(15)$	$0.0210(2)$
O4	$0.35317(13)$	$-0.18513(7)$	$-0.03763(15)$	$0.0218(3)$
O5	$-0.02741(14)$	$-0.10672(8)$	$-0.19953(15)$	$0.0280(3)$
Cr1	$0.12859(3)$	$-0.120499(13)$	$0.11540(3)$	$0.01295(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0271(9)$	$0.0133(8)$	$0.0223(9)$	$-0.0016(6)$	$0.0046(7)$	$-0.0035(6)$
C1' $^{\prime}$	$0.0238(9)$	$0.0148(8)$	$0.0143(8)$	$-0.0025(6)$	$0.0010(6)$	$0.0018(6)$
C2	$0.0226(8)$	$0.0155(8)$	$0.0185(8)$	$-0.0028(6)$	$0.0008(7)$	$0.0002(6)$
C2 $^{\prime}$	$0.0249(9)$	$0.0141(8)$	$0.0184(8)$	$-0.0011(6)$	$-0.0022(7)$	$0.0037(6)$
C3' $^{\prime}$	$0.0295(10)$	$0.0125(7)$	$0.0214(9)$	$-0.0055(7)$	$0.0017(7)$	$0.0026(6)$
C3	$0.0240(9)$	$0.0170(8)$	$0.0189(8)$	$-0.0025(7)$	$0.0007(7)$	$0.0026(6)$
C4'	$0.0204(9)$	$0.0238(9)$	$0.0215(8)$	$-0.0092(7)$	$0.0030(7)$	$0.0029(7)$
C4	$0.0190(8)$	$0.0152(8)$	$0.0149(7)$	$0.0005(6)$	$-0.0017(6)$	$0.0014(6)$
C5	$0.0134(7)$	$0.0194(8)$	$0.0145(7)$	$-0.0003(6)$	$-0.0003(6)$	$0.0010(6)$
C5'	$0.0157(8)$	$0.0282(9)$	$0.0231(9)$	$-0.0005(7)$	$0.0062(7)$	$0.0040(7)$
C6	$0.0146(8)$	$0.0168(8)$	$0.0160(8)$	$-0.0024(6)$	$0.0013(6)$	$-0.0034(6)$
C6'	$0.0243(9)$	$0.0188(8)$	$0.0170(8)$	$0.0011(7)$	$0.0072(7)$	$-0.0003(6)$
C7	$0.0168(8)$	$0.0143(7)$	$0.0169(8)$	$0.0001(6)$	$0.0029(6)$	$0.0005(6)$
C7'	$0.0240(5)$	$0.0159(4)$	$0.0236(5)$	$-0.0015(4)$	$0.0056(4)$	$0.0004(4)$
C8	$0.0218(8)$	$0.0169(8)$	$0.0130(7)$	$-0.0012(6)$	$-0.0016(6)$	$0.0016(6)$
C8'	$0.0179(8)$	$0.0128(7)$	$0.0184(8)$	$-0.0028(6)$	$-0.0019(6)$	$-0.0013(6)$

sup-4

supplementary materials

C9	$0.0215(8)$	$0.0140(7)$	$0.0134(7)$	$-0.0029(6)$	$0.0019(6)$	$-0.0017(6)$
C9'	$0.0143(8)$	$0.0202(8)$	$0.0213(8)$	$0.0005(6)$	$0.0036(6)$	$-0.0005(6)$
C10	$0.0134(7)$	$0.0159(7)$	$0.0151(7)$	$0.0004(6)$	$0.0025(6)$	$0.0016(6)$
O1	$0.0419(8)$	$0.0117(6)$	$0.0135(6)$	$-0.0046(5)$	$-0.0057(5)$	$0.0009(4)$
O2	$0.0314(7)$	$0.0122(6)$	$0.0177(6)$	$0.0000(5)$	$-0.0027(5)$	$0.0002(5)$
O3	$0.0240(5)$	$0.0159(4)$	$0.0236(5)$	$-0.0015(4)$	$0.0056(4)$	$0.0004(4)$
O4	$0.0190(6)$	$0.0206(6)$	$0.0258(7)$	$0.0003(5)$	$0.0032(5)$	$-0.0063(5)$
O5	$0.0236(7)$	$0.0394(8)$	$0.0195(7)$	$0.0032(6)$	$-0.0032(5)$	$0.0001(6)$
Cr1	$0.01308(14)$	$0.01116(13)$	$0.01423(14)$	$-0.00064(9)$	$0.00033(9)$	$-0.00028(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-O2	1.426 (2)
C1-H1A	0.96
C1-H1B	0.96
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.96
C1'- C^{\prime}	1.401 (2)
C1'-C6'	1.424 (3)
C1--C2	1.517 (2)
C1'-Cr1	2.2221 (17)
C2-O1	1.436 (2)
C2-C3	1.518 (2)
C2-H2	0.98
C2'-C3'	1.419 (2)
C2'- ${ }^{\text {- }} 1$	2.2044 (17)
C2'-H2'	0.93
C3'-C4'	1.397 (3)
C3'- ${ }^{\text {- }} 1$	2.2194 (17)
C3'-H3'	0.93
C3-C4	1.524 (2)
C3-H3A	0.97
C3-H3B	0.97
C4'- ${ }^{\text {C5 }}$	1.417 (3)
C4'- ${ }^{\text {Cr } 1}$	2.2216 (17)
C4'-H4'	0.93
C4-C10	1.508 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{Cl}-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
C2'- Cl^{\prime} - $\mathrm{C}^{\prime}{ }^{\prime}$	118.91 (16)
C2'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 2$	118.79 (16)
C6'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 2$	122.29 (15)
C2'- $\mathrm{Cl}^{\prime}-\mathrm{Cr} 1$	70.86 (10)
C6 - $\mathrm{Cl}^{\prime}-\mathrm{Cr} 1$	71.16 (10)
C2-C1- ${ }^{\text {- }} 1$	130.16 (12)
O1-C2-C1'	105.27 (14)

O1-C2-C3	111.62 (14)
C1- ${ }^{\text {C2- } 2-} 3$	111.90 (14)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2$	109.3
$\mathrm{C} 1{ }^{\prime}-\mathrm{C} 2-\mathrm{H} 2$	109.3
C3-C2-H2	109.3
C1'-C2'-C3'	120.66 (17)
C1 ${ }^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{Cr} 1$	72.24 (10)
C3'-C2'-Cr1	71.86 (10)
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	119.7
C3'-C2'-H2'	119.7
Cr1-C2'- ${ }^{\prime} 2^{\prime}$	128.5
C4'-C3'- ${ }^{\prime} 2^{\prime}$	120.04 (17)
C4'-C3'-Cr1	71.75 (10)
C2'-C3'-Cr1	70.71 (10)
C4'-C3'-H3'	120
C2'-C3'-H3'	120
Cr1-C3'-H3'	130.1
C2-C3-C4	109.27 (14)
C2-C3-H3A	109.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
C4-C3-H3B	109.8
H3A-C3-H3B	108.3
C3'-C4'- ${ }^{\text {C }}{ }^{\prime}$	119.71 (16)
C3'-C4'- ${ }^{\text {Cr } 1}$	71.57 (10)
C5'-C4'- ${ }^{\text {Cr } 1}$	71.28 (10)
C3'-C4'-H4'	120.1
C5'- $\mathbf{C 4}^{\prime}$ - $\mathrm{H} 4{ }^{\prime}$	120.1
Cr1- C^{\prime} - H^{\prime}	129.4
C10-C4-C3	109.26 (13)
C10-C4-H4A	109.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.8
C10-C4-H4B	109.8
C3-C4-H4B	109.8
H4A-C4-H4B	108.3
C6-C5-C10	122.81 (15)
C6-C5-H5	118.6
C10-C5-H5	118.6
C6'- ${ }^{\prime} 5^{\prime}$ - $\mathrm{C} 4^{\prime}$	120.25 (17)
C6'-C5'- ${ }^{\text {Cr } 1}$	71.63 (10)
C4'- $\mathbf{C 5}^{\prime}$ - Cr 1	71.51 (10)
C6'-C5'-H5'	119.9
C4'-C5'-H5'	119.9
Cr1-C5'- ${ }^{\prime} 5^{\prime}$	129.4
C5-C6-C7	118.50 (15)
C5-C6-H6	120.8
C7-C6-H6	120.8

O4-C8'-Cr1	179.72 (16)
O1-C9-C8	114.63 (14)
O1-C9-C10	123.27 (15)
C8-C9-C10	122.07 (15)
O5-C9'-Cr1	177.22 (16)
C5-C10-C9	116.69 (15)
C5-C10-C4	123.31 (15)
C9-C10-C4	119.97 (15)
C9-O1-C2	118.15 (13)
C7-O2-C1	117.25 (13)
C8'-Cr1-C9'	87.31 (8)
C8'-Cr1-C7'	87.84 (8)
C9'-Cr1-C7'	88.31 (8)
C8'-Cr1-C2'	89.59 (7)
C9'-Cr1-C2'	152.67 (7)
C7'-Cr1-C2'	118.72 (7)
C8'-Cr1-C5'	155.74 (7)
C9'-Cr1-C5'	93.20 (7)
C7'-Cr1-C5'	116.42 (8)
C2'-Cr1-C5'	78.89 (7)
C8'-Cr1-C6'	152.24 (7)
C9'-Cr1-C6'	120.40 (7)
C7'-Cr1-C6'	91.05 (7)
C2'-Cr1-C6'	66.76 (7)
C5'-Cr1-C6'	36.75 (7)
C8'-Cr1-C3'	91.40 (7)
C9'-Cr1-C3'	115.48 (7)
C7'-Cr1-C3'	156.15 (8)
C2'-Cr1-C3'	37.43 (6)
C5'- $\mathrm{Cr} 1-\mathrm{C} 3^{\prime}$	66.50 (7)
C6'-Cr1-C3'	78.69 (7)
C8'-Cr1-C1'	114.87 (7)
C9'-Cr1-C1'	157.81 (7)
C7'-Cr1-C1'	91.79 (7)
C2'-Cr1- ${ }^{\prime} 1^{\prime}$	36.90 (6)
C5'-Cr1-C1'	66.97 (7)
C6'- ${ }^{\text {Cr1- }}{ }^{\text {C }}{ }^{\prime}$	37.42 (7)
C3'-Cr1-C1'	66.98 (6)
C8'-Cr1-C4'	118.55 (7)
C9'-Cr1-C4'	90.93 (7)
C7'-Cr1-C4'	153.54 (8)
C2'- $\mathrm{Cr} 1-\mathrm{C} 4{ }^{\prime}$	66.91 (7)
C5'- $\mathrm{Cr} 1-\mathrm{C} 4{ }^{\prime}$	37.21 (7)
C6'- ${ }^{-} 1-\mathrm{C} 4{ }^{\prime}$	66.71 (7)
C3'-Cr1-C4'	36.68 (7)
C1'-Cr1-C4'	79.24 (7)

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	${ }^{\cdots} \cdots$	$D-\mathrm{H} \cdots A$
C4'-H4'..O22 ${ }^{\text {i }}$	0.93	2.54	3.459 (2)	169
$\mathrm{C} 2{ }^{\prime}-\mathrm{H} 2^{\prime} \ldots \mathrm{O} 4^{\text {ii }}$	0.93	2.46	3.153 (2)	132
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots 4^{\text {iii }}$	0.96	2.57	3.314 (2)	134

supplementary materials

Fig. 1

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2002).

